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Abstract

An algorithm is presented for updating finite element models based upon a minimization of dynamic

residuals. The dynamic residual of interest is the force unbalance in the homogeneous form of the equa-

tions of motion arising from errors in the model’s mass and stiffness when evaluated with the identified

modal parameters. The present algorithm is a modification and extension of a previously-developed Sen-

sitivity-Based Element-By-Element (SB-EBE) method for damage detection and finite element model up-

dating. In the present algorithm, SB-EBE has been generalized to minimize a dynamic displacement

residual quantity, which is shown to improve test-analysis mode correspondence. Furthermore, the algo-

rithm has been modified to include Bayesian estimation concepts, and the underlying nonlinear optimiza-

tion problem has been consistently linearized to improve the convergence properties. The resulting

algorithm is demonstrated via numerical and experimental examples to be an efficient and robust method

for both localizing model errors and estimating physical parameters.
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Nominal mass, damping and stiffness matrices

Experimental frequency (rad/s) for modei

Experimental mode shape vector for modei

Dynamic residual (modal force) vector

Undamped impedance matrix for modei

Measured, unmeasured partitions of

Change in parameter vector (i.e.  at iteration )

Mode shape projection operator

Parameter sensitivities for modei

Objective function, linearized gradient and Hessian

Variation of projected mode shape due to

Approximate covariance matrix of dynamic residual

Covariance matrix of measured mode shape

Covariance matrix of the experimental eigenvalues

Covariance matrix of the initial parameters

Mass-weighted modal assurance criteria

I.    Introduction

A significant amount of research in structural dynamics system identification has focused on m

for reconciling finite element models of structures with modal parameters identified from dynamic te

Early approaches to this problem involved the direct updating of assembled stiffness and mass ma

correlate to the available modes and mode shapes identified from test. In order to choose a parti

lution from an infinite number of possible solutions, some quantity, such as the norm of the matrix 

ment, was minimized1,2. Recent modifications to this general approach involve retaining the connec

pattern of the model through constraints3,4,5, or minimizing the rank of the matrix update6. These methods

are efficient and have been used successfully for both model adjustments and for structural damag
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tion. When used in the context of model validation, the adjusted matrices are intended to guide the

in revising the finite element model’s global and elemental parameters in a manner consistent with 

cific design, the underlying physics, and the finite element method. For this discussion, this class o

ods can be termed optimal matrix updating.

A fundamentally different approach involves estimating or updating the “physical” parameters 

structural design, such as cross-sectional areas, elastic moduli, or added masses, used in the finit

model definition7,8,9,10. There are a number of advantages to such an approach over optimal matrix 

ing methods. First, the formulation of the initial model, including its connectivity, is implicitly preser

Secondly, results of model updating can be understood in terms of errors in design parameters or m

assumptions. This provides a mechanism, at least ideally, for learning and improving the future m

of similar structures. Finally, the updated model is directly useful for design sensitivity analysis a

tains the form of the finite element model data, without requiring additional interpretations such as

case with the optimal matrix updating approach. It should be noted, however, that the generality an

of the updated model depends critically on the selection of parameters to be adjusted, and thus the

of parameters (i.e. model error localization) can itself introduce significant error. The approach of e

ing model parameters is termed sensitivity-based model updating, as it utilizes the sensitivity of pr

and estimated quantities, such as modal parameters or response functions, to the physical para

the model.

The present paper addresses the problem of sensitivity-based model updating through the m

tion of a dynamic residual. This residual arises due to errors in the model stiffness and mass matr

is a reflection of the difference between the model’s predicted modal parameters and the modal pa

from experimental data11. It is a different approach, however, from directly comparing the predicted

measured modal parameters and does not require the computation of the model modes and dete
3
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of the correspondence between the model modes and the test modes. This is a distinct advantag

terms of computational expense and in reducing the complexity to the user, since such mode-to-m

respondence can be difficult to establish when significant modeling errors exist. The present algo

a modification and extension of a previously-developed Sensitivity-Based Element-By-Elemen

EBE) method for finite element model updating10. Hemez12 provides a more detailed literature review a

comparison of SB-EBE and other sensitivity-based algorithms for the interested reader.

The modifications of the basic SB-EBE algorithm address a number of practical issues enco

when applying the algorithm to complex structures. First, a consistent linearization of the governin

imization problem is derived to improve the rate of convergence of the algorithm. The new linear

couples the mode shape projection and parameter estimation stages of the algorithm at a minor c

tional cost, and improves the estimate of curvature in the optimization space. Secondly, the residu

erning the update problem is redefined as a displacement, rather than force, quantity through a fl

weighting. It is shown that this weighting improves the correspondence of test and analysis modal

eters typically used to assess the model’s accuracy. Finally, Bayesian estimation13 is incorporated to con-

dition the update problem. Bayes estimation involves the use of relative confidence measures

parameters being updated and the observed data used to guide the estimation. This important mo

leads to a more reliable algorithm, especially in the presence of small sensitivity coefficients, large

errors, and correlation between parameters.

The remainder of the paper is organized as follows. In Section 2, the basic SB-EBE theory an

rithm is reviewed. In Section 3, the new modified algorithm is developed theoretically and its imple

tation is detailed in Section 4. Numerical and experimental results are given in Section 5, and Se

offers concluding remarks.
4
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II.    Review of Basic Theory and Algorithm

The governing equations for linear time-invariant structural dynamics are typically given as

(1)

whereK, C, andM are the stiffness, damping, and mass matrices from the finite element model,q is a vec-

tor of displacements,u is a vector of applied forces, and  maps those forces to the associated deg

freedom of the model. The homogeneous form of Eqn. (1) leads to the following undamped gene

eigenproblem:

(2)

where  is the eigenvalue, which is equal to , the square of the undamped natural frequency

is the associated eigenvector, which is physically the normal (i.e. undamped) mode shape.

The basic SB-EBE theory10 determines the change  to a set of physical parameters of the m

which minimize the norm of the dynamic force residual, viz.

(3)

 is the dynamic force residual for modei, defined as

(4)

where  is an experimentally-determined normal frequency of the structure for modei, and  is the

associated normal mode shape. Unfortunately, the degrees of freedom (DOF) at which the mode

sampled from test is typically much smaller than the number of DOF in the finite element model 

definesK andM. Therefore, to apply Eqn. (4), either the model must be reduced to the measuremen

or the measured portion of the mode shape must be expanded to the displacement basis of the m

Mq̇̇ Cq̇ Kq+ + B̂u=

B̂

Kφ λMφ=

λ ωn
2 φ

∆p

Ri 2
2

i
∑ 
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Ri K ωEi
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ωEi
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original SB-EBE algorithm uses an expansion of the experimental mode shapes to compute the d

residual, which is advantageous because it provides an estimate of the dynamic residual in terms o

displacement set of the model, facilitating error localization.

The theoretical basis for correcting the model using the dynamic force residual is as follows.

“correct” model is given as

(5)

and from Eqn. (2)

(6)

then

(7)

Hence,  is a function of both magnitudes and spatial locations of the model errors. The basic 

algorithm consists of three key steps: mode shape projection, error localization (parameter selecti

parameter estimation. The algorithm is iterative; the mode shapes are projected using the curren

(which is in error), and then the projected shapes are used in computing the parameter updates. T

mass and stiffness matrices are then updated at each iteration with the parameter variations and

iteration begins. Thus as the iterations proceed, the model and hence the mode shape projections

leading to better parameter estimates and so on. The iterations conclude when the magnitude of th

eter variations fall below a user-defined threshold. The algorithm steps are detailed in the followin

sections.

Kc K ∆K+=

Mc M ∆M+= 
 
 

Kc ωEi

2
Mc–( )φEi 0=

Ri– ∆K ωEi

2 ∆M–( )φEi=

Ri
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A.     Mode Shape Projection

To derive the proper projection operator from Eqn. (3), we must partition the mode shape  

measured and unmeasured components, and also partition the associated columns of the mass an

matrices. Then

(8)

where  is the mode shape for modei at the measurement DOF,  is the unmeasured portion o

same mode shape, and , , , and  are the measured and unmeasured column sets of

ness and mass matrices. The mode shape projection directly results from minimizing the dynamic 

with respect to , assuming no change in the model parameters, viz.

(9)

Defining  as the dynamic stiffness of modei and partitioning  into sets  and , th

residual  can be written as

(10)

Therefore, the minimization problem is

(11)

which leads to the mode shape projection

φi

Ri K ωEi

2
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Km Ko ωEi
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(12)

After the projection operator  for modei is determined, the mode shape is projected and the dyn

force residual  with respect to the model DOF can be computed. The force residual is then give

(13)

B.     Error Localization

Recalling Eqn. (7), the DOF exhibiting the largest force residuals will be associated with the

model elements whose parameters are significantly in error. Therefore, it is reasonable to select t

rameters which cause the largest perturbations to the element matrices associated with a set of mo

j, whereR(j) is above some threshold level. In the original SB-EBE method this process is termed “

ing.”

C.     Parameter Estimation

The final step, after projecting the mode shapes and choosing which model parameters to va

compute the updated parameter values which minimize the sum of dynamic force residuals over

modes, viz.

(14)
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The estimator is determined by expanding  in a first-order Taylor series with respect to the par

variations :

(15)

where

(16)

and  is computed from Eqn. (8) using the projected mode shape  obtained from Eqn. (12). H

is the sensitivity of  to the parameters being updated. Plugging Eqn. (15) into Eqn. (14) and mini

with respect to the parameter variations , we have

(17)

where

(18)

and the update is given as

(19)

Ri

∆p

Ri δRi+ Ziφi

Zi∂
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III.    New Algorithm: Theory

The motivation for developing a new algorithm based upon the SB-EBE method came from t

that algorithm on a moderately simple beam structure which will be reviewed in a later section. The

revealed a number of problems, including small magnitude parameter updates leading to slow 

gence, and convergence to poor solutions as measured by frequency errors and mode shape cor

Based on the above concerns, the basic theory and algorithm was re-worked to incorporate:

• Consistent linearization of the optimization problem

• Generalization of the modal error vector

• Inclusion of Bayesian estimation concepts to regularize the updating equations

We now proceed to detail these modifications.

A.     Consistent linearization of the optimization problem

The solution proposed by the basic algorithm is staggered in the following sense. Although the

is being adjusted in the overall procedure, this adjustment is ignored in the determination of the

shape projection. While this simplifies the theory somewhat, it may introduce a serious comput

cost. By ignoring the coupling between the projection and the parameter estimation, the curvatur

parameter space is poorly estimated. The result is that the curvature is artificially large, leading to 

parameter changes and much slower convergence.

This problem can be alleviated by adding a correction  to the projected partition of the 

shapes which accounts for the mode shape dependence on the parameter variation in a consisten

Using

(20)

δφoi

φoi Zoi
T

Zoi( )
1–
Zoi

T
ZmiφEmi– δφoi+=

PoiφEmi δφoi+=
10



the residual  is given as

(21)

and the minimization problem (ignoring terms higher than second-order) is

(22)

where

(23)

The first-order conditions are:

(24)

since .

Thus, the linearized coupled system of equations is given as:
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where

(26)

Finally, noting the special form of Eqn. (25), the mode shape perturbations  can be eliminated 

the new parameter estimator

(27)

where

(28)

and  are given by Eqn. (18).

Comparing Eqn. (18) to Eqn. (28), it is seen that the consistent linearization changes the curv

the design space , generally reducing its magnitude. This formulation introduces only a modest i

in computations as the factorization of  is already computed during the mode shape projecti

and thus can be saved for use in Eqn. (28). The introduction of this consistent linearization, howev
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B.     Generalization of the modal error vector

The objective function selected for the optimization problem, Eqn. (3), is by no means the onl

choice for performing finite element model update. Its advantage is that it does not require solving

modes of the finite element model, and tracking those analytical modes with respect to the test mo

disadvantage, however, is that the updated model may not improve the errors between the analysi

frequencies, or improve the correlation of the mode shapes. In fact, these accuracy indicators ma

nificantly degraded, and the resultant model cannot be judged as accurate as the initial model.

In seeking to understand the convergence of the basic algorithm to poor solutions as measure

rors in the updated frequencies and mode shapes, it is helpful to compare the dynamic residual 

tional modal parameter-based error metrics. First, we can re-write the contribution of modei to the

objective function in equivalent modal parameter terms, viz.

(29)

wherej ranges over all possible modes of the finite element model, and

(30)

Here  is a mass-weighted variant of the Modal Assurance Criterion14, which is a normalized

measure of the correlation between two mode shapes, in this case model modej and test modei. The pa-

rameter  is the modal mass of the test mode shape. From Eqn. (29), the contribution to the ove

namic force residual from test modei is equivalent to summing up the squares of the differences betw

test eigenvaluei and each of the eigenvalues of the model, which are scaled by the correlation betw

Ri
T

Ri αi ω j
2 ωEi

2
–( )

2
MACij( )

j
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T

MφEi( )
2

φ j
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Mφ j( ) φEi( )T
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----------------------------------------------------------= αi φEi( )T
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test model shape and the associated model mode shape. Thus, if small correlations exist betwee

mode shape and any model mode shapes with vastly different frequencies, the product of

(which is large) with a small correlation coefficient  can lead to a term which can domina

error index being minimized. This has the undesirable effect of biasing the algorithm away from re

ing test and model modes which correspond more closely in both mode shape and frequency.

To alleviate this problem, we can replace the modal force error by a generalized moda

, where

(31)

This result can be obtained approximately by definingW as

(32)

which implies that the generalized modal error is a dynamic displacement residual quantity, rathe

dynamic force residual. In this way, the problem of large error terms resulting from small correlatio

tween modes with large differences in frequency has been mitigated by normalizing the error index

C.     Including Bayesian estimation concepts

Although the parameters being estimated usually evolve from some nonzero initial estimate, th

algorithm places no relative confidence on these initial values with respect to the test data used fo

adjustment. The quantitative result is that there is no penalty placed on the magnitude of the pa

change. Therefore, any final parameter value, no matter what magnitude or sign, is judged as su

the original estimate as long as the sum of the dynamic force residuals have been reduced. In a

there are usually both hard constraints placed on the parameter values and some degree of conf

ωi
2 ωEi

2
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MACij

Ri W Ri=
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ω j
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the initial parameter estimates. Furthermore, the test data used for model adjustment is often im

and the confidence in the data varies depending on whether frequency or mode shape component 

are being considered.

A popular approach in estimation theory to address the aforementioned concerns is the use of B

estimation13. For linear structural dynamics applications such as the present model updating pr

Bayesian estimation reduces to a generalized least-squares problem7. We can modify the performance in

dex of the basic algorithm as follows:

(33)

where

(34)

 is the covariance matrix of the initial parameters being estimated,  is the covariance matrix

components of measured mode shapei,  is the variance of the square of the measured modal freq

cy, and  is the mode shape projection matrix. The covariance matrix  represents the variances

component of the dynamic residual vectors . The covariance matrices for the data,  and

ideally obtained from statistical analysis of the measured data, while the covariances for the para

, are usually assumed relative to the other covariance matrices and is intended to reflect the co

in the initial parameters values relative to the confidence in the data used for revising the paramet

Appendix A for an detailed description of how the covariances matrices were obtained in the exper

example problem of Section V.

The primary difficulty in introducing the Bayesian estimation concept, or equivalently a maxi

J
∆p φoi,
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J Ri
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likelihood estimator, is that the error quantity being minimized is not directly a measured quantity,

the covariance being introduced is not simply the variances of the test data. Instead, the dynamic

is a nonlinear function of the data, the model matrices and the mode shape projection. The mod

projection is itself a function of the model and based on the minimization of the overall functiona

though introducing statistical measures can, in general, increase the robustness of the algorithm

proach leads to nonlinearities because the mode shape projection and modal error covariance esti

coupled.

IV.    New Algorithm: Implementation

In this section we review the step-by-step procedure for the new modified algorithm and discu

plementation issues. The procedure is given in Box 1 and represents one pass or iteration throug

dating algorithm. Because of the inherent nonlinearity of the optimization, convergence to a soluti

require many iterations. As noted previously, the mode shape projection and residual covariance

tation given in Step 2b is actually a coupled problem, because the projection is dependent on the

provided by the covariance matrix, while the covariance matrix depends on the projection. In the 

work, this nonlinearity is handled in a very cursory manner by computing an initial estimate of

only the measured component of the mode shapes. This initial estimate of  is used to compute

mate of the mode shape projection. The mode shape projection estimate is used to re-compute a 

timate of , which is then used to complete the algorithm. This predictor-correction approa

estimating  seems to work adequately for the applications studied. Other possibilities might inclu

ing a completely different mode shape projection algorithm to compute .

A.     Control of Curvature Estimate

As mentioned in the preceding sections, a consistent linearization of the optimization is emplo

Qi

Qi

Qi

Qi

Qi
16



Step 1. Given

Step 2. For modes i=1 to N

Step 2a. Form  and partition into

Step 2b. Compute  using Eqn. (34),factor  andsolve the mode shape projection:

Step 2c. Compute , sensitivities  where

Step 2d. Compute , where

Step 2e. Solve

Step 2f. Sum:

Step 3. Solve

Step 4. Update
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Box 1: Summary of the Present Algorithm
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the modified algorithm to improve its convergence properties. Caution must be exercised, however

linearization does not guarantee a positive-definite hessian. The present procedure offers two mec

for controlling the curvature to avoid this result. The first is the use of Bayes estimation, which con

the estimation problem by contributing a penalty term on the change in the parameter estimates. 

cally, this term provides a positive-definite contribution to the hessian which can be adjusted to ref

analyst’s relative confidence in the initial parameter estimates.

The second mechanism for controlling the curvature estimate is through the use of a constant

parameterizes the linearization between that of the basic algorithm  and the modified alg

. This parameterization is utilized during the computation of  in Step 6 of the procedure 

(35)

This constant controls the degree of coupling between the mode shape projection and the pa

estimation. Note that the basic algorithm is always guaranteed positive-definite, but that guarantee

at the cost of a poorer estimate of the curvature. The use of the parameter  allows that cost to

trolled by the user.

B.     Model Reduction

Rather than projecting the mode shapes, reduction of the model to the measurement degrees

dom can be employed15. This is often avoided because the static reduction of a refined model down 

small number of DOF measured will introduce errors in the predictive accuracy of the model, lea

nonzero dynamic residuals and inappropriate parameter corrections. A compromise is to employ

ponent mode synthesis type of reduction such as the Hurty/Craig-Bampton technique16,17, which augments

a static condensation to the measurement DOF with a set of generalized DOF spanning the lowe

modes of the omitted dynamics. Typically, the addition of a small number of generalized DOF is suf

β

β 0=( )

β 1=( ) G

G G Bi
T

Qi
1–
Bi β ci

T
di( )–+=

β
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to ensure that the reduced model can predict the lower eigenmodes of the full-order system. The 

to guarantee that the differences between the experimental modes and the modes of the reduced 

primarily a function of the parameters of the full model and are not strongly influenced by the mo

duction itself. The experimental modes would then be projected into this slightly larger subspace.

C.     Statistical Significance of the Parameter Estimates

An advantage of Bayes estimation is that it allows the analyst to assess the confidence interval

final estimates of the parameters, as a function of their initial covariances, their sensitivity to the 

mental modal parameters used in the estimation, and the covariances of those parameters7. A linearized

estimate of the covariance of the updated parameters is given by

(36)

evaluated at the point of convergence. From this result, the standard deviation of the parameter

determined by taking the square root of the diagonal elements of . This statistical quantity is o

valid as the covariances of the experimental data and the initial parameters. The updated variance

to their initial values are useful in determining whether the change in parameters is significant and

on the measured data.

V.    Applications

A.     Numerical Data: Planar Truss Structure

The first example from Reference 10 was chosen to test the implementation of the modified alg

and assess its performance relative to the basic SB-EBE procedure. This example considers a free

nar truss with 44 translational DOF, 7 of which are measured. For this comparison, the first 5 f

Qp
ˆ G

1–
Qp
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Bi

T
Qi
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Bi ci Zoi
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modes are used to update the model, and the only parameters being updated are the elastic modu

of the elements. Furthermore, the test data is assumed to be perfect (zero variance), which implies

Bayesian covariance weights are not used. Thus the only differences between the two algorithms

consistent linearization of the optimization problem and the weighting of the modal force error.

The results are documented in Table 1. Note that, although the use of the flexibility weightin

help to speed the convergence, it also introduces a computational overhead, especially when the w

matrix is full rather than sparse. Note also that updating the weighting matrix at each iteration as th

ness was updated did not improve the convergence of the algorithm. The need for weighting the

error vector is dictated more by the quality of the final solution when the data is imperfect than by th

vergence of the algorithm. Finally, it was found that using the full extent of the consistent linearizat

to a negative curvature which caused the algorithm to diverge. Therefore,  was reduced to 0.95

results in the fastest convergence. The CPU times given are for simple Matlab21 implementation of the al-

gorithms running under Matlab Vers. 4.2c on a HP700 workstation. The numbers shown are the m

the estimated times from 30 identical analyses as computed using thecputime function in Matlab.

Table 1: Comparison of Convergence Using Modified Algorithm

The cases documented above were based upon the same convergence criterion. The parame

Method Weighting Matrix
# update

iterations
CPU time

 (sec)

Basic SB-
EBE

N/A 180 12.24

Modified W=I
(modal force error minimization)

25 2.30

Modified

(held constant)

8 2.44

Modified

(updated each iteration)

9 3.55

β

β 0.95=

β 0.95=
W Ko

+
=

β 0.95=
W Kup

+
=
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for the basic SB-EBE algorithm and the modified algorithm withW=I are shown in Figure 1. Note her

that, even at 180 update iterations, the basic algorithm has still not reached the correct updated p

values, while the modified algorithm with its consistent linearization has converged to within 1% 

correct values in less than 30 iterations

B.     Experimental Data: LADDER Structure

The experimental example problem is a tubular welded frame composed of thin-wall, rectangul

tubing formed into a symmetric two rung ladder and representative of an automotive engine supp

test setup is shown in Figure 2. The structure was instrumented with 96 accelerometers grouped 

cations in order to extract both translational and rotational response at beam cross-sections throug

structure. Excitation was effected through the use of an impact hammer and frequency response 

(FRF) data were obtained using standard data reduction techniques. A modal model was then obta

ing Polyreference18 as implemented in SDRC's TDAS software package.

The finite element model of the structure is shown in Figure 3; it is a NASTRAN model consist

CBEAM elements, with spring elements introduced to model the joint compliances. A detailed illust

of the modeling of the welded joint is shown in Figure 4. The goal of the model updating was prima

determine the unknown joint compliance parameters, and to adjust the basic properties, in order t

late the first 14 modes identified from test. A description of the nine design parameters considere

updating analysis is given in Table 2. GRID locations were established to coincide with the physica

tions of the accelerometers and these GRIDs were attached to the beams via multi-point constra

use of CBEAM elements was dictated by the need to correctly model the torsional inertia of the cro

tion. The accelerometer masses were also incorporated into the model. The correlation of the m

rameters between the test-identified modes and the initial analysis model is documented in Table

After attempts to reconcile the model using the basic SB-EBE procedure failed, the modified alg
21



 and

refore,
was developed and applied to this problem. Initially, it was found that the joint spring parameters

 had insufficient sensitivity to the measured modal parameters to be effectively estimated. The

Table 2: Description of Modeling Parameters for Update

Parameter Description (x,y,z refer to Figure 4) Initial Value

Localized joint spring in x-translational direction 6.01e+6 N/mm

Localized joint spring in y-translational direction 6.01e+6 N/mm

Localized joint spring in z-translational direction 6.01e+6 N/mm

Localized rotational joint spring about x-axis 2.53e+8 N-mm

Localized rotational joint spring about y-axis 1.96e+8 N-mm

Localized rotational joint spring about z-axis 4.80e+8 N-mm

Area moment of inertia about weak axis of tube 3.11e+5 mm^4

Area moment of inertia about strong axis of tube 5.89e+5 mm^4

Torsional constant of tube 6.15e+5 mm^4

Table 3: Initial LADDER Model/Test Comparison

Test
Mode

Test
Frequency

(Hz)

Model
 Mode

Model
Frequency

(Hz)

%difference
Frequency

Modal
Assurance

Criteria

1  78.9674 1 72.3633 -8.36 0.9973

2 170.6259 3 174.9456 2.53 0.9963

3 174.4670 2 161.5404 -7.41 0.9934

4 214.7231 4 206.3898 -3.88 0.9981

5 250.9062 5 255.1062 1.67 0.9951

6 312.1717 7 318.6140 2.06 0.9580

7 315.7890 6 312.8396 -0.93 0.9516

8 317.7661 9 368.6281 16.01 0.9486

9 330.2652 8 333.6956 1.04 0.9968

10 432.5194 10 451.6765 4.43 0.9937

11 518.5953 11 534.4661 3.06 0.9890

12 563.6540 14 806.4039 43.07 0.8115

13 612.8141 12 631.6433 3.07 0.9816

14 674.3648 13 678.9766 0.68 0.7993

Kux

Kuy

Kuz

Kθx

Kθy

Kθz

I 1

I 2

J

Kux

Kuz
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those parameters were fixed for the duration of the updating procedure at their initial values, given i

2. The update evolved as follows: the joint rotational spring parameters were estimated based on

8 flexible modes with the model statically reduced to the 96 sensor DOF. This implies that no mode

projection was performed. Then, cross-sectional parameters  and , which are the area mom

inertia and torsional constant of the beam elements, respectively, were added and estimated al

joint rotational springs using test modes 1-9 with the model statically reduced to the sensor DOF. T

values were estimated based on modes 1-12 with the same parameters plus  and using the m

duced to measured DOF plus torsional DOF for model grids. This final estimation thus required t

mode shapes be projected. The procedures used to determine the covariance matrices for the an

described in Appendix A.

The resultant parameter values are given in Table 4. The correlation of the updated model to

the first 14 modes are documented in Table 5. Observe that the frequency errors have been redu

a maximum of 43% to below 4%, while the mode shape correlations have been maintained or slig

proved. Note also from the parameter update results that the updated coefficients of variation 

Table 4: Parameter Update Results for LADDER Structure

Parameter
Final Value

(relative to initial)
Initial COV Updated COV

0.4250 100% 0.49%

0.2580 100% 0.00153%

104.0 100% 3.58%

1.4621 100% 1.39%

0.9415 3% 0.00663%

0.9178 3% 0.0191%

1.0091 3% 0.00661%

I 1 I 2, J

Kuy

Kuy

Kθx

Kθy

Kθz

I 1

I 2

J
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which is the standard deviation of the parameter expressed as a percentage of the parameter val

nificantly smaller than the assumed initial COV. This implies that the parameters were highly sens

the modal data used in the estimation. Of course, the updated COV are directly a function of the a

initial COV and the assumed variances of the experimental data, and so can only be considered re

those assumptions. In conclusion, the present modified algorithm performed very well using the 

mental data, resulting in a highly accurate updated model. One verification of the model accurac

improvement in the correlation of modes 13 and 14, whose errors were not used in the updating p

VI.    Concluding Remarks

An algorithm for updating finite element models using modal data has been presented. The alg

minimizes a generalized dynamic residual which is a function of the experimental modal paramet

Table 5: Final LADDER Model/Test Comparison

Test
Mode

Test
Frequency

(Hz)

Model
 Mode

Model
Frequency

(Hz)

%difference
 Frequency

Modal
Assurance

Criteria

1 78.9674 1 78.8034 -0.21 0.9978

2 170.6259 2 169.6736 -0.56 0.9963

3 174.4670 3 174.6665 0.11 0.9931

4 214.7231 4 218.2671 1.65 0.9984

5 250.9062 5 249.0289 -0.75 0.9957

6 312.1717 6 307.9859 -1.34 0.9894

7 315.7890 7 315.5987 -0.06 0.9789

8 317.7661 8 323.0028 1.65 0.8792

9 330.2652 9 324.1070 -1.86 0.9521

10 432.5194 10 435.3196 0.65 0.9955

11 518.5953 11 514.9591 -0.70 0.9894

12 563.6540 12 542.8199 -3.67 0.8724

13 612.8141 13 615.0687 0.37 0.9732

14 674.3648 14 673.2796 -0.16 0.8250
24
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the model mass and stiffness matrices. The present algorithm is a modification of a previous me

sensitivity-based element-by-element model updating and incorporates a generalized error we

consistent linearization and Bayesian estimation. The algorithm has been demonstrated on nume

experimental data and has been shown to be an efficient and effective approach for estimating pa

to reconcile test and analysis models.
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Appendix A: Determination of Covariance Matrices for Experimental Example Problem

The covariance matrices of the experimental parameters,  and  were not directly av

from statistical analysis of the data. Instead, the covariance matrices used by the algorithm wer

mined as follows. Two sets of frequency estimates were obtained by curve-fitting the same freque

sponse functions using two different modal parameter estimators. The first set are the frequencies 

via Polyreference18 and given in Table 3, while the second set was obtained using a time and freq

domain procedure19. Assuming the experimental frequency errors were normally distributed acros

modes, a variance for the distribution, , was estimated from the differences between the frequen

This variance was estimated to be . The covariance matrix  is then given

(37)

where  is the diagonal matrix of the test eigenvalues.

The covariance matrix for the experimental mode shapes was obtained by assuming an expect

for the MAC14 and relating that to an assumed error normally distributed across the elements of th

shape vector. Given this assumption, the covariance matrix for  is20

(38)

For the present analysis, the expectation for the MAC was assumed as  for all m

The physical interpretation of this procedure is as follows: assume a series of modal tests on th

structure were performed, each leading to an estimate of the mode shapes with respect to the sa

measurement points. From this series of tests, a mean value for each of the mode shape vectors c

tained. Then the MAC can be computed between each test mode shape and the mean mode shap

Qφmi
Q
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series of tests. The parameter  in Eqn. (38) is the mean of the computed MACs across th

of tests. Specifically, for  tests,

(39)

Thus  is an expression of the uncertainty or error between different estimates of the sam

modal vectors, and by assuming a normal distribution of errors across the measurement points, i

to the covariance matrix by Eqn. (38).

The initial variances of the parameters were obtained by assuming that the initial joint spring di

tions were normal and centered at the initial parameter values with standard deviations equal to 1

the parameter value. The beam area distributions were assumed to have standard deviations of 3%

initial values. All initial covariances between the parameters are assumed to be zero, such that th

 is diagonal with the variances of each of the parameters on the diagonal. Assuming a normal d

tion for the parameters is not technically correct, since it allows for the possibility of the parameters

on negative values which is not physically possible. Using normal distributions is simply a conve

which simplifies the Bayesian estimation to the least-squares form of Eqn. (34).
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Figure 1: Convergence of Parameters for Numerical Example
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Figure 2: Modal Testing Setup for LADDER Structure
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Figure 3: Finite Element Model of LADDER Structure
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Figure 4: Modeling Detail for Welded Joint
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